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Rigidity and connectivity percolation in heterogeneous polymer-fluid networks
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A heterogeneous network which is partially polymerized and partially fluid is studied by Monte Carlo
simulation in two dimensions. Within statistical uncertainties, the compression modulus is found to be
independent of polymer fraction, while the shear modulus vanishes below the connectivity percolation
threshold. This behavior is different from networks without the fluid component, for which the rigidity
percolation threshold is roughly double the connectivity percolation threshold.
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Heterogeneous membranes which are partially fluid
and partially polymerized have several experimental real-
izations. For example, membranes composed of certain
phospholipid molecules can be partially polymerized
upon exposure to UV light [1-3]. Prior to polymeriza-
tion, the membrane has a nonzero area compression
modulus (K 4) and a vanishing shear modulus (1) charac-
teristic of a fluid. The fluid behavior of the homogeneous
membrane is reduced as the molecules become increas-
ingly polymerized.

A second example comes from red blood cells (RBC’s),
whose boundary membrane consists of a lipid bilayer at-
tached to an approximately triangular network of spect-
rin protein [4]. The bilayer is fluid and contributes
strongly to the compression modulus. The nonzero shear
modulus arises from the spectrin protein network, which
has a fixed connectivity on short-time scales [S-7]. Mu-
tant RBC’s which are spectrin deficient are found to have
a reduced shear modulus compared to normal RBC’s
[8,9]. These two examples show systems that have fluid
connectivity between some elements and fixed connectivi-
ty between others.

In this Brief Report we investigate networks contain-
ing random polymeric bonds between elements that oth-
erwise have fluid connectivity with their neighbors. It is
not clear that either of the examples quoted above in fact
have random polymerization. For example, in the par-
tially polymerized phospholipid bilayer [1-3], there is in-
dication that the polymerization occurs in patches. How-
ever, single-component randomly diluted networks have
been investigated in statistical mechanics [10-22] and al-
low a benchmark against which our randomly polymer-
ized network can be compared.

In randomly diluted networks, bonds or sites are
present at random locations with occupation probability
p- Above the connectivity percolation threshold p, a sin-
gle connected cluster spans the network. Consider first
the situation in which the bonds have only stretching
resistance, but no bending resistance against neighboring
bonds. Then the elastic constants are zero both below
and immediately above p.. It is only at a higher concen-
tration called the rigidity percolation threshold pp that
both elastic constants are nonzero [10]. For a bond-
depleted triangular network p.=2sin(7/18)=0.35 and
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Pr~% [11-15]. When bond-bending resistance is intro-
duced, the elastic constants are zero below p. and
nonzero above p. [16-20]. In studies of the flatness of
site [21] and bond [22] diluted membranes embedded in
three dimensions, it is found that the membranes are al-
ways asymptotically flat for concentrations above p,.

Random heterogeneous fluid-polymer networks should
be different from the single-component random networks
since in a heterogeneous network K, may be always
nonzero while only pu vanishes below a critical polymer
fraction. In this paper, we determine the two-
dimensional elastic constants of a heterogeneous model
membrane in which a parameter p represents the degree
of polymerization [23].

Our computation is based upon the tethered membrane
model [24,25] in which the two-dimensional membrane is
represented by a fixed number N of hard spherical beads
(or vertices) of diameter a. The beads are linked together
by straight flexible tethers, whose maximal length of V/3a
enforces membrane self-avoidance. In our model, each
tether is characterized as either fluid or polymerized.
Fluid tethers, shown in light grey in Fig. 1, can migrate
from vertex to vertex subject to computational rules set
out below. Polymerized tethers, shown in white in Fig. 1,
have fixed connectivity in that their ends are always at-
tached to the same vertices. There is no resistance to in-
plane “bending” of the tethers with respect to each other
except the resistance associated with the excluded volume
of the beads.

A Metropolis Monte Carlo technique is used to gen-
erate a set of appropriately weighted sample
configurations. A value is chosen for the polymerization
fraction p and an initial configuration (which we call a
realization) at that value of p is generated by randomly la-
beling each tether as either fluid or polymerized. Because
of machine time constraints, we choose to work with only
a few realizations of large systems (N =576), rather than
many realizations of smaller systems. Three realizations
are generated at each p simulated above p,, but only one
realization for each p below p,.

In the simulation, a sweep across the membrane in-
volves the following steps: (i) An attempt is made to
change the position of each vertex by choosing a new po-
sition randomly from within a square box of length 2la to
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FIG. 1. Sample configuration for polymer fraction p=0.5
viewed perpendicular to the plane of the membrane. The fluid
tethers are grey, while the polymerized tethers are white.

the side centered on the old position, where we choose
[=0.1. (ii) An attempt is made to reconnect every fluid
tether following the procedure of Baumgartner and Ho
[26]. In this procedure, a tether is removed and replaced
with a new tether connecting the two ‘“‘opposite” vertices
that (along with the vertices at the ends of the original
tether) define the two triangles having the original tether
in common. The polymerized tethers are not subject to
procedure (ii) since their attachment is permanent. Each
trial move is accepted if it does not violate the tether-
length and bead-size constraints.

A rectangular membrane “patch” subject to periodic
boundary conditions in the x and y directions is used in
the simulation. An isobaric simulation is performed by
allowing the rectangle lengths L, and L, to vary indepen-
dently. There is one trial move to rescale the rectangle
size per sweep. The rescaling moves are accepted with a
pseudo-Boltzmann factor [27]

W=exp[—BPAA+NIn(1+AA/A4)], (1)

where P is the pressure and A A4 is the difference in the
area (4 =L,L)) before and after the rescaling. In these
simulations, the pressure has been set to zero.

For each realization, 150 sample configurations are
generated. Each configuration is separated by a “Rouse
time” 7=N /I?> Monte Carlo sweeps. Each initialization
is allowed to relax for 107 before sample collection com-
mences. More than 9 X 10° attempted moves are made on
each vertex and tether for a given realization. The entire
simulation required approximately 7 CPU months on a
33-MHz Model MIPS R3000 processor purchased from
Silicon Graphics Inc.

Two independent determinations of Young’s modulus,
Y, and Y, are made from fluctuations of the rectangle
length in the x and y directions, respectively [28]:

BY,=[(AYL2)/(L))*—1)] !, (2a)
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BY,=[(A)Y(L})/{L,Y*—1)]". (2b)

The area compression modulus K 4, is determined from
the area fluctuations

BK ;,=(A)/({A?)—(A4)%). (3)

Finally, the shear modulus u is obtained from Y and K
via

p=YK , /(4K ,—Y), @

where the average of Y, and Y, is used for Y in Eq. (4).
The equations are used to determine the elastic constants
of each realization, and then the results from different
realizations at a given polymerization fraction are aver-
aged. With this procedure, our statistical uncertainties
are approximately 10%.

The behavior of the elastic constants is shown as a
function of polymerized fraction in Fig. 2. The compres-
sion modulus BK ,a? is relatively constant within our sta-
tistical uncertainties and has a value of 18+1. By making
an analogy with a network of harmonic springs, Kantor
and Nelson [25] predict that the polymerized tethered
network should have BK ,a?~20, which is close to the
value obtained here.

The shear modulus Bua? is also shown in Fig. 2.
Below p =~0.35, the shear modulus is zero. Above this
fraction, the shear modulus increases roughly linearly to-
wards the pure polymerized membrane value of 91+1. At
p=1, we find K /u=2 within statistical error, as predict-
ed by the harmonic spring model [25]. This linear rise of
the shear modulus with p is the same general behavior
observed in randomly diluted networks [11-20]. Howev-
er, for random triangular networks subject only to bond-
stretching resistance, the threshold py for the appearance
of nonzero shear modulus is roughly double the connec-
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FIG. 2. Compression modulus BK ,a? (circles) and shear
modulus Bua? (squares) as a function of polymer fraction p.
The networks have a total of 576 vertices, and three realizations
are performed at each value of p. Estimated uncertainties are
approximately 10%.
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tivity percolation threshold. For our partially polymer-
ized networks, the two thresholds coincide.

The difference between our network and the randomly
diluted networks of Refs. [11-15] can be understood by
considering ‘“holes” in the polymerized part of the net.
In our network, the holes are filled with vertices connect-
ed by fluid bonds so the holes have compression resis-
tance. In the bond and site percolation studies, the holes
are empty and highly deformable. Hence, our model net-
work should have greater resistance to deformation than
the diluted central-force network.

Experimentally, Waugh and Agre [9] find that the
effective shear modulus of human RBC’s increases linear-
ly with spectrin content, as observed here. However,
there are enough difficulties (see Refs. [9,19]) in extract-
ing the true shear modulus near the spectrin percolation
threshold from the effective shear modulus measured ex-
perimentally, that we are unable to compare our results

BRIEF REPORTS 47

with the RBC shear modulus at low spectrin content.

In conclusion, we determine the elastic constants of a
heterogeneous network that is partially fluid and partially
polymerized. The shear modulus vanishes for polymer
fraction p below the connectivity percolation threshold
p., while above p, it increases linearly with p. The
compression modulus is finite for all p. This behavior is
different from bond or site diluted random networks with
only bond-stretching resistance, for which p, is not equal
to the rigidity percolation threshold pr and for which
both elastic moduli vanish below p,.
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FIG. 1. Sample configuration for polymer fraction p=0.5
viewed perpendicular to the plane of the membrane. The fluid
tethers are grey, while the polymerized tethers are white.



